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During currentless storage (i.e., open circuit), the corrosion layer of the 
PbO, electrode undergoes changes that result in a considerable potential 
drop across the corrosion layer during subsequent discharge. This is observed 
especially after high-temperature drying ( > 100 “C) or after storage for a long 
time with, and without, electrolyte [l - 121. The principal characteristics of 
the galvanostatic discharge curves are shown in Fig. 1. 

The change in the corrosion layer consists mainly of a reduction in the 
instability from the thermodynamic point of view. This has been produced 
during the anodic phase by a reduction in the oxygen gradient between the 
grid lead and the PbOo of the active mass. In turn, this causes a broadening 
of the PbO, -zone (1~ n -z 1.5) and imparts semiconducting properties to the 
electrode [6,7]. The reduction of the oxygen gradient is brought about by a 
solid-state reaction, and by a liquid-state reaction when there is a deficiency 
of acid. The products of both reactions are PbO and PbO,. The reactions are 
shown schematically in Fig. 2. 

The non-ohmic properties and the potential- and polarity-dependence of 
the resistance of the electrode are illustrated in Fig. 3 (curves 7,8) by 
potentiodynamically generated voltage/current curves at passivated dry- 
charged PbO, electrodes. The origin of the pasaivation must be located in the 
corrosion layer because plots across the active mass show clear ohmic 
properties (curves 1 - 4). The passivation of the PbO, electrode is avoided in 
the case of drying and storage by plating the grid of the electrode with a tin 
layer [13]. This is demonstrated by curves 5 and 6 in Fig. 3, and by the data 
of Fig. 4 (galvanostatic discharge curves after drying) and Fig. 5 (galvanos- 
tatic discharge curves after storage). 

Impedance methods have been used to characterize the passivation 
layer. For dried electrodes, it has been found that the passive layer contains 
a capacity component in addition to the non-linear part of the resistance. 
Oscillographic observations of the a.c.-potential properties of the passivated 
PbO, electrode have allowed the cause of passivation to be explained in terms 
of a phase-junction model. On one side, a Schottky barrier is formed between 
the metallic lead and the p-conducting PbO,, while on the other side a 
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Fig. 1. Typical galvanoetatic discharge characterietica of PM), electrodes. A, after formation; B, 
after drying (175 “C, 2 h); C, after storage. 
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Fig. 2. Change in corrosion layer during paeeivation proceeeee. 
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Fig. 3. Voltage/current curves of dried PM), electrodes measured acroee active maea (curves 
1 - 4) and between grid (Pb2.5%Sb) and active maea (curves 5 - 8). Curves 1,s. Sn-covered grid, 
dried at 80 “C; curves 2,6, Sn-covered grid, dried at 175 “C; curves 3,7, dried at 80 “C; curves 4,8, 
dried at 175 “C. 

pn-junction develops between the p-conducting PbO, and the n-conducting 
PbO, [14]. Because of the close vicinity of the two phase junctions, it is 
reasonable to assume that an npn-transistor structure is set up with 
a base that is not freely accessible. This configuration has been modelled 
and, as a result of the non-ideal structure of the real semiconductor 
junctions of the passivated PbOz electrode, an additional connection of the 

Fig. 4. Galvanostatic discharge curvee of dried PbO, electrodee with different mod&d grids 
(‘Z’ = 175 “C; Z P 3 x C,). 1, Pb-2.5%Sb; 2, grid covered with 3 pm Sn; 3, grid covered with 
1.5 pm Sn; 4, Pb2.5%SLl%Sn; 5, Pb-2.5%Sb-O.l%Sn; 6, Pb-2.5%Sb, Sn species adsorbed. 
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Fig. 5. Galvanoetatic discharge curves after wet storage at 40 “C! (Z P 3 x C,): (a) Pb-Z.S%Sb; 
(b) Pb-2.5%Sb covered with 3 pm Sn. Number on each curve repreeente storage time in months. 
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Fig. 6. Representation of the phase junctions of a passivated PbO, electrode and a modelled 
equivalent circuit. 

modelled semiconductor junctions to a parallel RC-combination has been 
established (Fig. 6). 

The failure of a passivation layer to form in the presence of tin species 
is obviously due to a high doping of PbO, by the tin. Clearly, the doped PbO, 
has a considerably higher conductivity, and possibly even exhibits a switch 
in conductivity, than that of an n-type semiconductor. Thus, the semiconduc- 
tor junctions metal/PbO, and Pb0,/Pb02 take on an ohmic character in the 
presence of tin. 
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